A
/\m

VLDB2025

vancouver

Towards Designing and Learning
Piecewise Space-Filling Curves

Jiangneng Lil, Zheng Wang?!, Gao Cong?, Cheng Long?!, Han Mao Kiah?,
and Bin Cui?

INanyang Technological University ’Peking University

o8] NANYANG
TECHNOLOGICAL
UNIVERSITY

SINGAPORE

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Introduction

The motivation and our idea

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 2

Space-Filling Curve (SFC)

* ASFCis used to map a multi-dimensional data point to a value

* Then a one-dimensional index can be used to index the mapped
values

« B+tree index, supported by many DBMS, such as PostgreSQL,
DynamoDB, HBase

 Learned indexes

* Each type of SFC has its

ALALALA NENE! AT AT . .
NIV R EEEREE own fixed mapping
) N - 1 function
VIV T\\J ! AR * Cannot be adjusted to

fit with different datasets.
(a) C-curve (b) Z-curve (c) Hilbert curve

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Design instance-optimized SFCs

* No single SFC can dominate the performance on all datasets and
qguery workloads

Q1 Q2 Q1 Q>

R R R I A
| 1&'%4 | 1h\\13
\1 ’ \1
I— \5_ 0 l XMI

(a) SFC-1 works best for Q;. (b) SFC-2 works best for Q,.

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 4

Our ldea

* Design a SFC that combining the advantage of multiple SFCs and thus
reach to an optimized performance

Q1 Q2 Q1 Q2 Q1 Q2

i W T I A BNE|
1&'%4 lk\k 1L\ 5

R IRt I

(a) SFC-1 works best for Q;. (b) SFC-2 works best for Q,. (c) SFC-3 combines SFC-1 and SFC-
2, works best for both queries.

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Problem Statement

* Database D
* Each data point X € D, has n dimensions, denoted by x = (d4,d>,...,d;;)

* Query Workload Q
* Each query g € Q, 9 = (Xmin, Ymin Xmax Ymax)

* Space-Filling Curve Design for Query Processing

* Given a database D and a query workload Q, we aim to develop a mapping
function T, which maps each data point X € D into an SFC value v, s.t. with an
index structure (e.g., B+ Tree) built on the SFC values of data points in D, the
query performance (e.g., I/O and query latency) on Q is optimized.

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Our Method

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 7

Bit Merging Pattern (BMP) [1]

* The bit merging pattern describes a set of bit merging-based SFCs.

* |dea: The input data is first written as the binary form, then merge the bit
according to the pattern (e.g., XYXY)

x = (10,,11,)
P, = XYXY P, = XXYY P, = XYYX
(10)(11D) (10)(11) 10)(11)
Y x) VW y
1101, 1011, 1110,
' ! !
vp, = 1101, vp, = 1011, vp, = 1110,

[1] Shoji Nishimura and Haruo Yokota. 2017. QUILTS: Multidimensional Data Partitioning Framework Based on Query-Aware
and Skew-Tolerant Space-Filling Curves. SIGMOD2017

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Desired Properties

* Two preferred properties for an SFC mapping T:X = v

* Injection property:
VX, # X,, T(x1) # T(Xx,)

* Monotonicity property:
x' = {bs, ..., by}
x" =1{b{,.., by}

Ifd; > d; is satisfied for Vi € [1,n]:

T(x) =T

Monotonicity is desirable for designing window query algorithms:
It guarantees that the SFC values of data points in a query rectangle fall in the range of
the SFC values formed by two boundary points of the query rectangle

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Design Challenges

1. How to partition the space and design an effective BMP for each
subspace?

2. How to design piecewise SFCs such that two desirable properties
hold?

3. How to design a data-driven approach to build the piecewise SFC,
given a database and query workload?

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 11

Piecewise SFC Design

* We propose a way of seamlessly integrating the subspace partitioning
and BMP generation while ensuring the desired properties.

x1 =0 x1 =1
* We follow the left-to-right BMP design, and
S, S, start with an empty string P, then we choose
a = (01,,01,)|b = (10,,01,) a bit X.
/ ‘\ Then the whole data space is partitioned
, . into two subspaces w.r.t. the value of bit x4,
P, = XYXY P, — XXYY where one subspace corresponds to x; =
((ﬁ}oj) (ﬁ)&?}) 0 (resp. x; = 1).
0011, 1001, * This partitioning enables us to separately
by = 30112 by = iomz design different BMPs for the two
(a) Example of Piecewise SFC Design. subspaces (57 and S3).

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Piecewise SFC Design

* We propose a way of seamlessly integrating the subspace partitioning
and BMP generation while ensuring the desired properties.

x1 =0 x1 =1
* We follow the left-to-right BMP design, and
) S, start with an empty string P, then we choose
a = (01,,01,)[p = (10,,01,) a bit X.

/ '\ Then the whole data space is partitioned
- - into two subspaces w.r.t. the value of bit x4,

P, = XYXY P, = XXYY where one subspace corresponds to x; =

(ilg?)l) (w&(’j) 0 (resp. x; = 1).
0011, 1001, * This partitioning enables us to separately
b, = 30112 by = iomz design different BMPs for the two
(a) Example of Piecewise SFC Design. subspaces (57 and S3).

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Piecewise SFC Design

* We propose a way of seamlessly integrating the subspace partitioning
and BMP generation while ensuring the desired properties.

x1 =0 x1 =1
* We follow the left-to-right BMP design, and
) S, start with an empty string P, then we choose
a = (01,,01,)|b = (105,01,) a bit X.
/ '\ Then the whole data space is partitioned
. - into two subspaces w.r.t. the value of bit x4,
P, = XYXY P, = XXYY where one subspace corresponds to x; =
(ilg?)l) (w&(’j) 0 (resp. x; = 1).
0011, 1001, * This partitioning enables us to separately
b, = 30112 by = iomz design different BMPs for the two
(a) Example of Piecewise SFC Design. subspaces (57 and S3).

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Piecewise SFC Design

* We propose a way of seamlessly integrating the subspace partitioning
and BMP generation while ensuring the desired properties.

x1 =0 x1 =1
* We follow the left-to-right BMP design, and
s, s, start with an empty string P, then we choose
a = (01,,01,)|b = (10,,01,) a bit X.
/‘ \ Then the whole data space is partitioned
, - into two subspaces w.r.t. the value of bit x4,
P, = XYXY P, = XXYY where one subspace corresponds to x; =
BAVA WP 0 (resp. x; = 1).
0011, 1001, * This partitioning enables us to separately
b, = 30112 by = iomz design different BMPs for the two
(a) Example of Piecewise SFC Design. subspaces (57 and S3).

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Bit Merging Tree (BMTree)

* The BMTree is to model the partition and BMP design information of
a piecewise SFC.

x1=0 x1=1

51 S2
a = (012,012) b= (102,012)

AR

Y \
P, = XYXY P, = XXYY
OD(01) (10)(01)
V(Y W
0011, 1001,
v, = 0011, vp = 1001,
(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

Bit Merging Tree (BMTree)

* The BMTree is to model the partition and BMP design information of
a piecewise SFC.

x1=0 x1=1

51 S2
a = (012,012) b= (102,012)

AR

Y \
P, = XYXY P, = XXYY
OD(01) (10)(01)
V(Y W
0011, 1001,
v, = 0011, vp = 1001,
(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 17

Bit Merging Tree (BMTree)

* The BMTree is to model the partition and BMP design information of
a piecewise SFC.

x1=0 x1=1

51 S2
a = (012,012) b= (102,012)

AR

Y \
P, = XYXY P, = XXYY
OD(01) (10)(01)
V(Y W
0011, 1001,
v, = 0011, vp = 1001,
(a) Example of Piecewise SFC Design. (b) Example of BMTree Structure.

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

BMTree Construction

* We model the SFC design procedure as the BMTree construction
procedure.

* During the BMTree construction, each time we fill one level of BMTree with
the selected bits, which also partition more subspaces and generate the next
level of leaf nodes.

' (1) BMTree whose root node ' (2) Possible bit choices to fill

| |
: is filled with x4 | : the two leaf nodes |

| |
| | |
| | : |
I I 1. Left: x,, Right: x,
I | I 2. Left: x,, Right: y4 |
I ! I 3. Left: y,4, Right x, !
I : I 4. Left: y;, Right y; :
| | |
| | |
e e - - - - e - - e e . . e e - - - - e - - e e . .

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 19

BMTree Construction

* We model the SFC design procedure as the BMTree construction
procedure.

* During the BMTree construction, each time we fill one level of BMTree with
the selected bits, which also partition more subspaces and generate the next
level of leaf nodes.

' (1) BMTree whose root node ' (2) Possible bit choices to fill

| |
: is filled with x4 | : the two leaf nodes |

| |
| | |
| | : |
I I 1. Left: x,, Right: x,
| I | 2. Left: 2570 nght V1 I
I ! I 3. Left: y,4, Right x, !
I : I 4. Left: y;, Right y; :
| | |
| | |
e e - - - - e - - e e . . e e - - - - e - - e e . .

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 20

BMTree Construction

* We model the SFC design procedure as the BMTree construction
procedure.

* During the BMTree construction, each time we fill one level of BMTree with
the selected bits, which also partition more subspaces and generate the next
level of leaf nodes.

. (1) BMTree whose root node . (2) Possible bit choices to fill | (3) BMTree constructed one

| | |
: is filled with x4 | : the two leaf nodes | : level deeper |

| | |
: | : | : |
I ' I 1. Left: x,, Right: x, ' I |
| I | 2. Left: 2570 nght V1 I | I
I : I 3. Left: y4, Right x, : I |
I [4. Left: y;, Right y; [:
| P 1! l
l ;! ;! l
e e - - - - e - e e e e - e e - - - - e - e e e e - | SR B e

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 21

BMTree Construction

* We model the SFC design procedure as the BMTree construction
procedure.

* During the BMTree construction, each time we fill one level of BMTree with
the selected bits, which also partition more subspaces and generate the next
level of leaf nodes.

. (1) BMTree whose root node . (2) Possible bit choices to fill | (3) BMTree constructed one

| | |
: is filled with x4 | : the two leaf nodes | :level deeper |

| | |
: | : | : |
I ' I 1. Left: x,, Right: x, ' I |
I ! I 2. Left: x,, Right: y4 | | |
I : I 3. Left: y4, Right x, : I |
I [4. Left: y;, Right y; [:
| P 1! l
l ;! ;! l
e e - - - - e - e e e e - e e - - - - e - e e e e - =

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 22

Use Reinforcement Learning to construct BMTree

* The reason why use reinforcement learning:

* Heuristic methods are difficult to be designed to construct BMTree to
optimize the query performance for a workload on a database instance.

e Utilizing reinforcement learning could directly optimize the BMTree based on
the reward.

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 23

MCTS based BMTree Construction

* We leverage Monte Carlo Tree Search method to help constructing
BMTree.

O node to be filled path selection ----» value backpropagation
MCTS Action Selection for Constructing One Level of BMTree

|

|

Rollouts on the policy tree |

(1) selection and (2) expansion (4) backpropagation :
|

|

|

BMTree constructed one
level deeper

Select Action

Choose(S,)
= Sg: XYYX, V'

Reward Generator

|

||

|

Rew=ZSRZ(q,D)—SRT(q,D) |
S I I

|

|

qeQ

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 24

Experiment

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 25

Comparing between SFCs

* Experiment on PostgreSQL.

Query Latency (us)
x10° x 107 X109

(0Z-curveAD QUILETS A EBMTree i

| | | | |
9|0 0ZcurveBBQUILTSABBMTree fip e (1-5] 1

il

]
]
|
= [\

I

SSSSSSSSSSS

] —

0
UNI SKE GAU UNI SKE GAU UNI SKE GAU

I FH

UNI SKE GAU UNI SKE GAU UNI SKE GAU UNI SKE GAU N
UNI GAU OSM-US TIGER L [_HSI_ o _Géy _______ O_ SI_VI;[{S_ L _TI_G_EB _____
(a) I/0O Cost (b) Query Latency

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 26

Comparing between SFCs

* Experiment on RSMI [2] (a learned index).

Node 2Access
X 10 | | . | |
00 Z-curve DB HibertBBQUILTS | 7 ml 2 a

|] HHEHMH i

i

0
UNT SKE GAU UNI SKE GAU UNI SKE GAU UNT SKE GAU

S SSSSYSSYYYS]
—_
e ——
—
———w)
e~~~
0
(@] —
o Ot = Ot
I
)
|
———
=
e
mp | |

G o e e e e S R R RSN R R S RS MmN RSN RSN RSN G G M MEE MEE MmN RSN MEE G G N SEE e MEE MEE S S S e e e e .

(a) Node Access

QueryzLatency (us)

|
: 6 X}O ! I ! X}l04 ! X\102 \ _
! 00z curve DB HibertHBQUILTS i 1
I 47E||E|BMTree :' Ml 14l 1.5 E .
| | g
I ! 15 1
| | \ ?

2 ! 2 4 \ 4
‘ M W MmN E
: 0 I H l E | : I H H | 0 I l | O :\ I ‘ l
, UNI SKE GAU UNI SKE GAU UNI SKE GAU UNI SKE GAU
|

UNI

GAU OSM-US

TIGER

(b) Query Latency

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE [2] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively Learning Spatial Indices.

Comparing between indexes

 Comparing traditional spatial indexes with BMTree-enhanced one-
dimensional indexes

UNI SK AU UN KE GAU UNI SKE GAU UNI SKE GAU
UNI GAU OSM-US TIGER

o o o e e
|
|
! OSTREBR* Tree B GridH B Quad-Tree d BzM B BZM+BMTree l IRSM1H B RSMI+BMTree :
|
: Query Latency (ys) x10* x 107 !
: 400F ' T 3F - 8F - !
|
| 300 6| 1o
I 20 = |
1200 41] 1
| 1 R |
: 100 H[/ 21 - "
, ; fle |
: 0 i o 0 0 :
|
|
; I

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 28

Conclusion and Takeaways

 Why the idea of piecewise SFC would work

* The design of the BMTree considered a SFC set with a large size, which
inherently contains a better SFC.

* The idea of piecewise enables the policy to adapt the mapping schemes of
subspaces depending on the specific database instance situation.

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 29

Thank you

Questions?

@ NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE 30

